Change-Point Detection in Time-Series Data by Direct Density-Ratio Estimation
نویسندگان
چکیده
Change-point detection is the problem of discovering time points at which properties of time-series data change. This covers a broad range of real-world problems and has been actively discussed in the community of statistics and data mining. In this paper, we present a novel non-parametric approach to detecting the change of probability distributions of sequence data. Our key idea is to estimate the ratio of probability densities, not the probability densities themselves. This formulation allows us to avoid non-parametric density estimation, which is known to be a difficult problem. We provide a change-point detection algorithm based on direct density-ratio estimation that can be computed very efficiently in an online manner. The usefulness of the proposed method is demonstrated through experiments using artificial and real datasets. keywords: change-point detection, direct density-ratio estimation, kernel methods, time-series data
منابع مشابه
Change-Point Detection in Time-Series Data by Relative Density-Ratio Estimation
The objective of change-point detection is to discover abrupt property changes lying behind time-series data. In this paper, we present a novel statistical change-point detection algorithm based on non-parametric divergence estimation between time-series samples from two retrospective segments. Our method uses the relative Pearson divergence as a divergence measure, and it is accurately and eff...
متن کاملSequential change-point detection based on direct density-ratio estimation
Change-point detection is the problem of discovering time points at which properties of time-series data change. This covers a broad range of real-world problems and has been actively discussed in the community of statistics and data mining. In this paper, we present a novel nonparametric approach to detecting the change of probability distributions of sequence data. Our key idea is to estimate...
متن کاملIdentification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملTraffic Condition Detection in Freeway by using Autocorrelation of Density and Flow
Traffic conditions vary over time, and therefore, traffic behavior should be modeled as a stochastic process. In this study, a probabilistic approach utilizing Autocorrelation is proposed to model the stochastic variation of traffic conditions, and subsequently, predict the traffic conditions. Using autocorrelation of the time series samples of density and flow which are collected from segments...
متن کاملBayesian Estimation of Change Point in Phase One Risk Adjusted Control Charts
Use of risk adjusted control charts for monitoring patients’ surgical outcomes is now popular.These charts are developed based on considering the patient’s pre-operation risks. Change point detection is a crucial problem in statistical process control (SPC).It helpsthe managers toanalyzeroot causes of out-of-control conditions more effectively. Since the control chart signals do not necessarily...
متن کامل